
IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 59, NO. 6, JULY 2010 2951

Low-Density Wireless Sensor Networks for
Localization and Tracking in Critical Environments

Angelo Cenedese, Giulia Ortolan, and Marco Bertinato

Abstract—In this paper, the problem of localizing and tracking
mobile nodes acting in a fixed wireless sensor network (WSN)
is addressed. A strategy is proposed based on an empirical map
of the received signal-strength distribution that is generated by
the WSN and on a stochastic model of the mobile-node behavior.
This approach results in being well suited for low-density setups
and critical environments. The theoretical background and the
architecture of the system are presented, together with simulations
to validate the design phase. Also, the system is implemented into a
real-time framework, and its performance is tested in an industrial
indoor environment.

Index Terms—Estimation theory, localization and tracking,
packet loss, random walk model, stochastic modeling, wireless
sensor networks.

I. INTRODUCTION

W IRELESS sensor networks (WSNs), which are large
networks of spatially distributed electronic devices

(nodes) capable of sensing, computation, and wireless commu-
nication, are becoming very popular not only within the acad-
emic community as a prototype for multiagent systems but in
industry as well. In fact, they can offer access to unprecedented
quality and quantity of information that can revolutionize our
ability to control the environment: Typical applications include
building environmental control [1], vehicular networks [2],
surveillance [3], habitat monitoring [4], [5], and manufacturing
automation [6]. In particular, location-based applications are
among the first and most popular applications of WSNs since
they can be employed to track people in wide outdoor areas
or enemies in the battlefield or in extending to indoor envi-
ronments the GPS approach for locating people and tracking
mobile objects in large buildings (e.g., warehouses, hospitals).
The work in this paper is motivated by one of these applications,
i.e., the design of a real-time system that can support fire-
rescue squads to locate them and to navigate through a building
during emergency scenarios. Moreover, to improve coordinated
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searching strategies, there might also be a need to communicate
a fireman’s position to an external unit supervising operations.

To achieve these objectives, we propose deploying a static
WSN whose nodes are placed in known positions. Each mobile
subject is then provided with a compact smart device [personal
digital assistant (PDA)-like] that can communicate with the
static network and compute and transmit the estimated current
position. In detail, the position of the node is obtained using
only the radio signals [received signal strength (RSS)] that
are provided by a standard IEEE 802.15.4 radio chip, without
resorting to any other special sensors or devices such as infrared
(IR) motion sensors, ultrasound, or directional antennas.

The entire network of both fixed and mobile nodes (MNs)
then realizes a distributed intelligence system, relying on the
computational capabilities of the nodes. In this framework,
however, local position computation is performed by the mobile
unit, allowing inherent robustness to static node failure and
scalability of the system since the static network simply keeps
on transmitting its own location, regardless of the number of
MNs in the area. Each PDA computes its own position and
displays it on a screen with a map of the environment similarly
to commercial GPS-based navigation systems. The position is
also transmitted to the static network, which routes it back to a
gateway and, finally, to the outer coordination center.

In addition, the localization system must also comply with
a number of constraints that are common to WSNs. In fact, it
needs to be power-efficient if the nodes of the static network
are battery-powered, to be robust to packet drop, and to run in
real time, and finally, it should maintain acceptable localization
accuracy, even in the event of some static node failure.

To avoid confusion, some definitions are in order before
proceeding: We define localization as the process of estimating
the position of a node, whereas tracking is the process of
estimating the trajectory of a moving node, possibly adopting
a model of the object dynamics to reduce localization error.

In recent years, the problems of localization and tracking
have been widely explored with particular emphasis on the
accuracy issue: On the other hand, however, the localization
error is not the only important factor that needs to be considered
when designing an appropriate system. Other aspects are im-
portant such as the number of nodes to achieve a desired local-
ization error, the computational requirements that are necessary
to run the proposed algorithms in real time, the installation and
maintenance costs, the system lifetime, the robustness to packet
drop and node failures, and the system scalability.

In this spirit, the contribution of this paper is twofold. On the
theoretical side, the proposed approach belongs to RSS map-
based localization systems and makes use of a stochastic model
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relying on empirical RSS measurements that are collected in the
real environment, similarly to that proposed in [7], but adopting,
in addition, a novel interpolation for the RSS map. Also, packet-
loss channel modeling has been studied and integrated into
the system. On a more practical ground, the system has been
evaluated both in simulation and real-world experiments, with
particular attention to issues such as the extension of the static
network coverage without excessive increase in the number of
nodes and the communication loss in the network. The architec-
ture is implemented in a real-world testbed using commercial-
off-the-shelf wireless sensor nodes, hardware, and software,
and the static network deployment procedure undergoes a con-
nectivity analysis step and a heuristic optimal placement of
sensors. Finally, real-time tracking experiments are performed
in a rather hostile and large-scale indoor environment that is
characterized by massive concrete walls, high electromagnetic
interference, and metallic structures.

Interestingly, a similar application project, in principle, has
been developed by the University of Berkeley and is called the
Fire Information and Rescue Equipment (FIRE) [8]. The FIRE
system is designed for working firemen and is composed of
two basic elements: 1) SmokeNet, which is a static WSN and
is able to monitor environmental parameters and to locate each
fireman inside the area of interest; and 2) FireEye, which is a
custom-made fireman equipment that includes a helmet with a
navigation liquid-crystal-display monitor.

The remainder of this paper is organized as follows. After a
brief review of the state of the art (see Section II), in Section III,
the problem is presented in a formal approach, and the steps for
the design of a localization system are described in detail. Then,
in Sections IV and V, simulations and real-world experiments
to assess and validate the proposed architecture and algorithms
are presented, respectively. Finally, in Section VII, some con-
siderations on the results are drawn.

II. STATE OF THE ART

Within the context of WSNs, localization algorithms can
be classified according to the parameter that is used to get
relative position information between nodes as, among others,
the angle of arrival (AoA; an estimate of the relative angles
between nodes), the time of arrival (the time that is taken
by the radio signal to propagate from one node to another),
the time difference of arrival (TDoA; the time interval be-
tween the reception of a radio signal and an ultrasound that is
emitted by a beacon), and the RSS (an index of the received
signal power). Approaches based on the first three quantities
require specific devices such as array antennas for the AoA
[9], ultrasound modules for TDoA [10], dedicated hardware
and software to maintain node synchronization [11], or motion
detection sensors such as magnetometers and IR motion sensors
[3]. Although successful implementations of systems based on
these approaches exist, they are not widespread because the
specific localization hardware is too expensive or fragile in
cluttered and dynamic environments.

Differently, RSS localization systems are much more popular
since most of today’s radio chips for WSNs provide them at no
extra hardware cost. In an ideal medium with an ideal antenna,

there should be an information-preserving correspondence be-
tween each RSS value and the relative distance between two
nodes; however, in an indoor environment, multipath fading,
reflections, diffraction, interference, and the presence of dy-
namics highly affect this relation. Although the localization
accuracy is poorer than the one achieved with the non-RSS
localization systems, it is sufficient in many applications, such
as the one addressed in this paper. Moreover, most of the algo-
rithms coping with the high variability of RSS measurements
can be grouped into two distinct classes, which are referred
to as RSS-map-matching-based localization and RSS-channel-
model-based localization, given a common architecture com-
posed of a set of static nodes that are placed at fixed locations
in the environment and a set of MNs to be localized.

The first class of algorithms is based on the RSS maps that
are generated by each static wireless node. In particular, these
maps take into account the location of the static nodes, as
well as the topology and the morphology of the environment,
including walls and static objects. The most popular tracking
systems in this class are RADAR [12] and MoteTrack [13].
The RSS map is obtained either by exploiting an analytical
model of propagation of the radio signal [14] or by dedi-
cated measurement campaigns. The analytical RSS map can
be provided by standard tools like ray tracing [15]; however,
it does not take into account small objects like tables and
shelves or dynamics in the environment, thus possibly leading
to poor performance. The empirical RSS map, instead, better
represents the real situation but requires an extensive set of
experiments [7]. From a different point of view, the RSS map
can be deterministic or stochastic, with the former associating
to each point (x, y, z) of the environment a single RSS value for
each node, and the latter resorting to a probability distribution
of RSS values: The stochastic RSS map is more realistic than
the deterministic one, as it takes into account possible dynamic
variations of the environment at the price, however, of a more
complex model [7], [16]. In all these cases, the maps are
computed offline for each static node, giving for any point in the
environment the corresponding RSS value or its probabilistic
distribution: Position estimates of MNs are then calculated
online by searching for a value that is closest to the current
measurement in terms of some defined metric, provided that
searching for the best match in the RSS map can be compu-
tationally expensive if the map is finely gridded. To overcome
this problem, for example, RADAR adopts a technique called
the nearest neighbor in signal space to identify a subset of
possible positions aiming at reducing the computation time that
is required for the location estimate. MoteTrack adopts a similar
strategy, called the reference signature, which also implements
features that reduce estimation errors, improving robustness
and scalability at the same time. Both RADAR and MoteTrack
are based on a deterministic model for the RSS map. If the RSS
maps are generated with a probabilistic method, the location of
the tracked node can be obtained by computing the most likely
location based on the received measurements using a Bayesian
approach. Recently, the multiple-transmit power information
has also been taken into account to model RSS maps [17]. This
strategy is more computationally expensive but also yields good
performance in highly cluttered indoor environments.
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Differently, the algorithms based on an RSS channel model
first try to estimate the relative distance between the moving
node and the static nodes and then use a geometric approach
to triangulate the location of the former. The advantage of this
strategy relies on the fact that no a priori detailed RSS map
of the environment is required, and the localization algorithms
are computationally efficient. In particular, the distance-versus-
RSS model is based on a fading-channel model with Gaussian
noise, and the distance is derived using a maximum-likelihood
estimator [18]. Once the relative distances from each anchor
node (AN) are obtained, the triangulation technique calculates
the location of the moving target by solving a linear set of
equations that results from geometric constraints, giving the
least squares location estimate. This technique is adopted by
the GPS system [19], and it requires at least three ANs to
estimate the location on a plane. Although computationally
attractive, it is quite sensitive to errors on the relative distance
estimates. A different natural localization strategy, based on
maximum ratio combining of measurements [20], considers
the position of the sensing static nodes as an estimate of the
location of the moving agent. The location of the target is, thus,
obtained by a convex weighted combination of the static node
positions, where the weight that is associated with each static
node is proportional to the RSS value or, equivalently, inversely
proportional to the estimated distance. This approach is even
simpler than triangulation but gives wrong answers if the target
node is close to the border or outside of the WSN-covered area.

So far, the described localization procedures simply provide
an estimate of the target position based on the measurements at
some time instant t. However, better estimates can, in principle,
be obtained by also using past measurements combined with
a stochastic model of the MN dynamics, such as a random-
walk model. Classical approaches for tracking are based on
Kalman filters [21] or more general Bayesian filters like particle
filters [7], [17], which act similarly to low-pass filters on the
instantaneous position estimates. This dynamic-based tracking
pairs particularly well with the stochastic RSS map-based local-
ization since they are both probabilistic models, and they will
be developed in detail in Section III.

III. SYSTEM MODELING

This algorithm is based on the measured RSS over the links
between ANs and an MN, which is sensed by the MN; a suitable
a priori map containing the RSS distribution over the area of
interest is built. The MN dynamics are modeled as a Markovian
homogeneous first-order process and, therefore, allow Bayesian
filtering to estimate and track the MN position. In this context,
the WSNs act in a centralized fashion since the MN is supposed
to be a smart sensor or to be connected to a processing unit
(e.g., a PDA or a laptop). The problem presented here deals
with a single MN, but the approach can easily be extended to
the multiobject tracking.

A. RSS Map Stochastic Modeling

Before formalizing the localization and tracking problem,
one observation is in order, regarding the 2-D reduction of the

problem (neglecting the vertical direction), which is intrinsi-
cally 3-D. In this context, however, the indoor localization is
considered where the 3-D environment is reduced to the collec-
tion of planar layers, which is a situation that is well suited for
building floors, where there is limited crosstalk among sensors
belonging to different floors. Note that if there is a need to also
track the vertical position, the extension of the proposed design
to the 3-D case can be carried out at the price of increasing the
complexity of the algorithms and the necessity of introducing
network variability w.r.t. the vertical coordinate, also within the
same floor, to avoid degeneration of the estimation.

The formalization of the problem proceeds as follows. Let
the region denoted as X ⊂ R2 be the monitored area; a WSN
that is composed of L ANs (also called beacons) is deployed
over region X at fixed and known locations s(l) = [s(l)

1 s
(l)
2 ]T ∈

X , l = 1, . . . , L. Conversely, an MN is free to move in X ,
and its position xt = [x1,t x2,t]T in the discrete time domain
t ∈ Z+ has to be estimated as the outcome of the localization
procedure.

As a matter of fact, the state xt is not a directly measurable
quantity, and thus, it has to be computed from L measurements
that are exchanged at each time step between the MN and the
ANs, i.e., yt = [y1,t, . . . , yL,t]T , yt ∈ RL, where each mea-
surement yl,t is the power (in decibels below 1 mW) of the
signal that is transmitted by the lth AN as received by the MN
when in the xt location. Without getting into detail, a well-
agreed model for the received power signal is a log-normal
model of the channel model [22] that is also validated by ray-
tracing techniques [14]; in terms of measurement variable yl,t,
this model yields the following:

yl,t = ȳl(xt) + vl,t, l = 1, . . . , L (1)

where ȳl(xt) is a deterministic value accounting for the at-
tenuation due to static obstacles and signal propagation, and
vl,t ∼ N (0, σ2

l (xt)) indicates the random effects of people
and small objects moving across the environment; both ȳl(xt)
and σl(xt) are obtained via experimental campaigns.

According to (1) and taking into account the independence
of L measurements, the probability of measuring yt being
the MN in xt is a vector whose mean and variance, respec-
tively, are

ȳt =

⎡⎢⎣ ȳ1(xt)
...

ȳL(xt)

⎤⎥⎦ ∈ RL

C(xt) =

⎡⎢⎢⎣
σ2

1(xt) 0 . . .
0 σ2

2(xt)
...

. . .
σ2

L(xt)

⎤⎥⎥⎦ ∈ RL×L.

The probability density function (pdf) of each measurement
yl,t ∼ N (ȳl(xt), σ2

l (xt)) is

p(yl,t|xt) =
1

(2π)1/2σl(xt)
e
− (yl,t−ȳl(xt))2

2σ2
l
(xt) (2)

Authorized licensed use limited to: ELETTRONICA E INFORMATICA PADOVA. Downloaded on July 30,2010 at 16:32:18 UTC from IEEE Xplore.  Restrictions apply. 



2954 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 59, NO. 6, JULY 2010

yielding the global conditioned pdf for the whole set yt

p(yt|xt) =
1

(2π)L/2 |C(xt)|1/2
e−

1
2 (yt−ȳt)

T C−1(xt)(yt−ȳt).

(3)

In reality, however, the transmission channel is far from the
ideal model (1) and presents weak signal events, which are
ignored by the MN device, and proper packet loss phenomena.
To take into account these issues, the packet-arrival process
is modeled as a random variable γl that is assumed to be
stationary and independent and identically distributed. More
in detail, γl(xt), which is related to the MN in xt receiving
from the lth AN, is a Bernoulli process with success proba-
bility λl(xt), whose value is chosen according to experimental
considerations; that is, γl(xt) assumes a unitary value with
probability λl(xt) when the transmitted signal is received;
otherwise, γl(xt) = 0, and a packet loss occurs. By doing so,
the measurement vector yt presents informative data entries ỹl,t

only with probability λl(xt), i.e.,

ỹl,t = yl,t if γl(xt) = 1. (4)

Otherwise, a default value y0 is used to indicate the measure-
ment corruption. From these considerations, the probability of
receiving the measurement ỹl,t conditioned to state xt takes into
account the two contributions that are related to received and
missed signals, thus modifying to

p(ỹl,t|xt) = λl(xt)
1√

2πσ2
l (xt)

e
− (yl,t−ȳl(xt))2

2σ2
l
(xt)

+ (1 − λl(xt)) δ(yl,t − y0). (5)

Since we suppose the L measurements to be mutually indepen-
dent, the following formula holds for the whole observation yt:

p(yt|xt) =
∏
l∈R

λl(xt)
1√

2πσ2
l (xt)

e
− (yl,t−ȳl(xt))

2

2σ2
l
(xt)

·
∏

m∈Q
(1 − λm(xt)) δ(yl,t − y0) (6)

where R represents the subset of received AN signals, and Q is
the subset of missed ones at time t. The quantities ȳl(x), σl(x),
and λl(x) are known for every possible state position x ∈ X
and for every AN l = 1, . . . , L; their values are being obtained
through an offline gathering, as shown later in this paper.

The solution to the localization problem, that is, to find an
estimate of position xt given the yt measurements, can be
obtained in a Bayesian setting (7) by exploiting the whole mea-
surement series {y1, . . . ,yt} to obtain a nonlinear recursive
filter, i.e.,

x̂t = E[xt | y1, . . . ,yt] =
∫
X

xtp(xt | y1, . . . ,yt)dxt. (7)

This approach basically corresponds to the extension of
the minimum-mean-square-error Kalman filter concept to a
nonlinear context and in the presence of non-Gaussian driving
processes (as, in general, for the application of interest).

The a posteriori pdf depends on a memory-less term and a
memory-bearing one, which follows

p(xt | y1, . . . ,yt) ∝ p(yt | xt)p(xt | y1, . . . ,yt−1) (8)

where p(yt|xt) is obtained through (6). On the other hand,
since obtaining the a priori pdf by analytically solving the
Chapman–Kolmogorov equation

p(xt | y1, . . . ,yt−1) =
∫
X

p(xt | xt−1)

× p(xt−1|y1, . . . ,yt−1)dxt−1, t > 1 (9)

is not a viable solution, a particle filter [23] is used to produce
an approximation of the a priori pdf as an equally weighted
sum of S Dirac pulses that are irregularly centered on a set of
particles {x(s)

t }S
s=1, i.e.,

p(xt | y1, . . . ,yt−1) ≈ 1
S

S∑
s=1

δ
(
xt − x(s)

t

)
. (10)

In this respect, from (6), (8), and (10), the following relation
holds:

p(xt|y1, . . . ,yt) ≈
S∑

s=1

a
(s)
t δ

(
xt − x(s)

t

)
(11)

where a
(s)
t ∝ p(yt|x(s)

t ),
∑S

s=1 a
(s)
t = 1 (weight normaliza-

tion), and the position estimate is finally given by

x̂t = E[xt | y1, . . . ,yt]

=
∫
X

xtp(xt | y1, . . . ,yt)dxt ≈
S∑

s=1

a
(s)
t x(s)

t (12)

where the a
(s)
t terms take into account the channel and the

packet-loss modeling.
As a further remark, adopting the packet-loss modeling al-

lows the definition of weights that are more consistent with
the effective behavior of the network and, thus, boiling down
to a more balanced estimation procedure for the MN location,
where measurements from robust channels are preferred.

A final note concerns the adopted particle filter, which is a
sequential importance resampling particle filter [23]. At every
discrete time t, the algorithm recursively computes a set of S

particles and their weights a
(s)
t , s = 1, . . . , S and, therefore,

approximating the a posteriori pdf p(xt|y1, . . . ,yt). At the
same time, to avoid degeneracy problems (a few particles with
heavy weights), the resampling step is done at every iteration:
In doing so, more equally weighted particles are placed instead
of a “heavy” single particle so that every state probability does
not change on the whole.

B. MN Dynamics

The MN dynamics are assumed to be a 2-D random
walk, which is modeled by a first-order homogeneous Markov
process, i.e.,

xt = xt−1 + wt (13)
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Fig. 1. Shape of the driving process for the MN dynamics. (a) Gaussian pdf. (b) Beta pdf. (c) Gaussian ring pdf.

where wt denotes the driving process. The probabilistic model
of the state evolution accords to p(xt|xt−1) = fw(xt − xt−1),
where fw is the w pdf. The initialization of the state, in terms
of p(x1),∀x1 ∈ X , can be obtained from a priori information
on the MN position or from higher level information that is
related to the environment structure (e.g., presence of entrances
or notable access points); otherwise, a uniform distribution is
adopted.

The modeled process is driven by a noise term wt, whose
features are determined by some hypotheses on the node dy-
namics. Preliminarily introducing polar coordinates ρ = ‖xt −
xt−1‖ and θ = arctan(x2,t − x2,t−1/x1,t − x1,t−1), the fol-
lowing three dynamic models are considered, also assuming
average walking and running speed of about, respectively, 1.3
and 4.4 m/s (in this context, a sampling time of 1 s is set).

• Gaussian pdf. At each time step, the steady condition
is the most probable behavior, whereas the probability
of moving decreases with the traveled distance in any
direction [16], [17]; the standard deviation σv is set to 3,
which means that the majority (68%) of the MN move-
ments are characterized by a velocity that is smaller than
3 m/s [see Fig. 1(a)]. In polar coordinates, this pdf can be
expressed as

fw(ρ) =
1

2π1/2σv

e
− ρ2

2σ2
v , fw(θ) =

1
2π

. (14)

• Beta pdf. A refinement to the Gaussian distribution is
obtained through a Beta function that ascribes nonnull
probability values only when moving within a finite dis-
tance from the past position, thus discouraging the steady
position while preventing, at the same time, unfeasible
long-distance movements, i.e.,

fw(ρ) ∝ 1
B(a, b)

ρa−1(1 − ρ)b−1I[0,ρMAX](ρ), fw(θ) =
1
2π
(15)

where B(a, b) is the Beta function B(a, b) =∫ 1

0 τa−1(1 − τ)b−1dτ , and I is the indicator function; in
the considered model, the pdf shows high values between
0 and 2 m/s and rapidly decreases to zero between 3 and
5 m/s [see Fig. 1(b); a = 1.28, and b = 3.6, ρMAX = 5].

• Gaussian ring pdf. A more realistic case appears to be
that where the steady position is given a null probability,
and the most probable traveling speed is modeled with a

Gaussian pdf with mean value ρ̄ = 1.5 m and standard de-
viation σv = 2 m, resulting in a uniform ring distribution
[see Fig. 1(c)].

Further walk models could anyway be adopted, such as, for
example, a nonisotropic pdf that, in some sense, discourages
any sudden change of direction.

C. Map Interpolation

Once the problem has been clearly stated and the theoretical
framework has been described in detail, a further remark on a
more practical ground is in order.

High-precision estimates require the definition of a fine grid
of possible a priori particle positions x(m), which is in contrast
to the need for an easy offline data gathering. Hence, a wider
and comprehensive mesh for the measurement data y is built
from the interpolation of the experimental data (obtained at N
locations {z(n)}N

n=1) over a finer grid of M > N points, with
Δ being the interpolation step, i.e.,

{z(n)}N
n=1 � {x(m)}M

m=1 = {[hΔ kΔ]T

h ∈ [0, . . . , H], k ∈ [0, . . . , K]} ⊆ X (16)

(although it is not required for the finer grid to be necessarily
regular), where the area of interest measures HΔ × KΔ. For
the sake of simplicity, the average RSS ȳl will be considered.
The data gathering provides a set of values {ȳl(z(n))}N

n=1, that
is, the measurements of the lth beacon at the z locations. This
can also be interpreted as an irregular N -sampling of a 2-D
stochastic stationary signal, i.e.,

ȳl(xt) ≈ ȳl

(
x(m)

)
=

N∑
n=1

cn

(
x(m)

)
ȳl

(
z(n)

)
=YT

l · c
(
x(m)

)
, l = 1, . . . , L,m = 1, . . . ,M (17)

where ȳl is the N -dimensional measurement vector from the
lth AN, and c is a vector of N coefficients that are related to
the specific x(m) location. Reasonably, the stochastic signal has
an isotropic correlation function r(‖x(i) − x(j)‖) = r(d), after
which, the coefficients cn(x(m)) are calculated by applying the
orthogonality principle that gives Wiener–Hopf simultaneous
equations [24] and, therefore, obtaining

c
(
x(m)

)
= R−1r

(
x(m)

)
(18)
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Fig. 2. Map of the simulation/experiment environment. (a) AN locations. The AN V2 is shown with a circle. (b) Delaunay triangulation. (c) Cell definition.

introducing R and r(x(m)) for compactness of notation as

R =

⎡⎢⎣ r
(‖z(1) − z(1)‖) · · · r

(‖z(1) − z(N)‖)
...

...
r
(‖z(N) − z(1)‖) · · · r

(‖z(N) − z(N)‖)
⎤⎥⎦

r
(
x(m)

)
=

⎡⎢⎣ r
(‖x(m) − z(1)‖)

...
r
(‖x(m) − z(N)‖)

⎤⎥⎦ .

Remarkably, when the interpolation location x(m̄) coincides
with the actual measurement position z(n̄), the interpolation
method provides the exact value ȳl(x(m̄)) = ȳl(z(n̄)). The
same method is applied for σ2

l and for λl.
In this paper, the model given by (4)–(13) and here recalled{

xt = xt−1 + wt

ỹl,t = yl,t, if γl(xt) = 1 (19)

is studied and exploited in simulation (see Section IV) and
implemented in real-world testbed experiments (see Section V).

IV. SIMULATIONS

Before entering the field of the code implementation for
the experimental campaign, the algorithm is validated through
MATLAB simulations based on the environment and the
a priori maps that are obtained from the real experiments (see
Section V for an accurate description).

First of all, the concept of cell is introduced. This idea is
not so trivial since the AN locations are not defined according
to a geometric displacement but obtained through a heuristic
placement procedure (see Section V). After the set V of AN
nodes is deployed [see Fig. 2(a)], a Delaunay triangulation
procedure is performed to produce the edges E [see Fig. 2(b)].
From the so defined graph G = {V, E}, the cell Ci that is asso-
ciated with the ith beacon Vi is a circle that is centered on the Vi

location, whose radius is the average length of the ith node out-
edges. The circle radius is assumed to be the cell dimension
[see Fig. 2(c)]. In the experimental and simulation setup, the
complete area coverage is attained (12 ANs over 1500 m2),
with the mean cell dimension being R = 12.12 m with standard
deviation σR = 1.54 m.

A second aspect concerning the generation of the
a priori maps is related to the AN characterization in terms

Fig. 3. Example of interpolated data from AN2 [highlighted in Fig. 2(a) with
a circle]: Mean RSS (in decibels below 1 mW).

of signal power emission/receipt and packet-loss probability.
In this respect, the environment is heavily affecting these
phenomena, as can be seen, for example, in Fig. 3, which
shows the interpolated maps of the RSS mean and variance, and
the packet-transmission success probability corresponding to
beacon AN2. The shape of these surfaces clearly highlights that
the node is located at a T-junction between two long corridors.

The track of an MN moving across the entire area avoiding
walls and barriers is considered to test a long and widely
distributed trajectory, and the experimental maps are employed.
In these simulations, a Gaussian ring-driving process (ρ̄ =
1.5 m, σv = 2 m) is assumed in model (13).

A first issue concerns the inclusion of the packet-loss phe-
nomena in the localization algorithm and its effects on the re-
construction performance w.r.t. similar approaches presented in
the literature [7]. For readability’s sake, in the following, the lo-
calization algorithm, including the packet loss, will be referred
to as the with-packet-loss (WPL) algorithm, while neglecting it
will be labeled as the no-packet-loss (NPL) algorithm. In simu-
lation, it is shown that the performance of the WPL algorithm is
7%–15% better in terms of the mean localization error than that
of the NPL procedure: In Fig. 4(a) and (b), an instance of the
reconstructed path is shown in the two cases of the NPL and the
WPL, also showing that the convergence of the WPL after a bad
estimate is faster than that in the case of the NPL. Over a large
number of simulations w.r.t. the simulation test path, the mean
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Fig. 4. Packet loss versus nonpacket loss algorithm. An example of path
reconstruction is given using the localization algorithm (a) without taking into
account the packet loss probability (NPL) and (b) taking into account the packet
loss (WPL). In both cases, a random initial condition is set (solid dot in the
center of the area). (c) Comparison of the two performances is obtained by
averaging the mean error over 30 simulations.

error distribution proves the validity of the former approach
[see Fig. 4(c)]: The error remains below the threshold of 0.7 m
in around 40% of the trials (versus 7% obtained with the NPL),
is below 0.8 m in 97% of the trials (versus 74% with the NPL),
and is below 0.9 m in 100% of the trials (versus 90% with
the NPL).

In addition, it is of fundamental interest to understand the
whole network performance in relation to the robustness of the
system to node failure, which is a major problem in WSNs. In
this spirit, besides the lossy channel model, complete failure of
nodes is artificially introduced in the AN network, gradually
decreasing the cardinality of V (the number of beacons) from
12 to 7. The comparison between the performance of the two
procedures NPL and WPL is summarized in Fig. 5: The mean
tracking error is plotted against the cell dimension, which
basically increases as the number of ANs decreases since the
remaining set needs to grant coverage to a wider area. While
the mean error that is obtained in the WPL case is lower than
that in the NPL case, the ratio between the WPL mean error and
the cell dimension also goes from about 6% up to 12%, which
is, in any case, quite a satisfactory factor.

As a further issue, the MN dynamics is investigated w.r.t.
the choice of the driving process in (13). Although of crucial
theoretical interest for statistics analysis and modeling, for
robustness’ sake, this aspect should not play a key role in
determining the performance of the tracking algorithm, and the
simulations described in the following show that this feature
is actually granted in the proposed framework. The trajectory
reconstruction error shown in Fig. 6 highlights the substantial
consistency of the estimated position w.r.t. the real data and

Fig. 5. Robustness analysis. The mean tracking error with dead motes ob-
tained taking and without taking into account the packet loss is compared with
cell dimension R; also, the cell dimension standard deviation σR is reported.

Fig. 6. Comparison among three driving processes for the MN dynamics.

Fig. 7. Particle filter performances in the WPL algorithm. The number of
particles versus mean error and computational time. The indicated time values
refer to the completion of the whole simulation path.

confirms how the algorithm (in this case also accounting for
the packet-loss phenomena using the WPL algorithm) is robust
to these dynamic model uncertainty, keeping—in all cases—the
error band, on average, below 1 m, which is much less than the
cell dimension R = 12.12 m, with only a few localized peaks.

A final note regards the particle filter implementation and the
chosen number of particles S. By varying S, it appears (see
Fig. 7) that the estimation mean error is related to S through
a decreasing exponential function, whereas the algorithm ex-
ecution time approximately grows with the square root of S.
The adopted number S = 500 grants good performance while
keeping the global running time of the procedure well within
both the simulation and real implementation timings.

V. IMPLEMENTATION AND EXPERIMENTAL RESULTS

Here, the implementation of the system in a real-world sce-
nario and the preparation for the operational use are presented,
which consist of two different tasks, namely, AN heuristic
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Fig. 8. RPS-simulated power distribution over the interested area. Thicker lines correspond to armored concrete walls and pillars, whereas thinner lines denote
mesh fences that people can walk through using apposite doors.

deployment and data gathering for a priori maps. Also, some
experimental results are discussed. The described infrastructure
was realized in an industrial basement floor in use; the ambient
measures 37 × 41 m, the area is about 1500 m2 wide, and the
ceiling is 3 m high, on average.

A. Beacon Deployment and Connectivity Analysis

The problem considered in the framework of this paper
concerns large and sometimes critical environments, and in-
deed, the location of the testbed installation is characterized
by reinforced concrete walls and pillars (over 1.5 m wide) and
metallic fences by the presence of industrial uninterruptible
power systems, electric boards, and high-voltage power cables.
A WSN that is suitable for such an environment should have
the following characteristics: low density, low consumption,
low maintenance, and ease of installation. At the same time, to
ensure a robust WSN design, the localization algorithm should
not depend on the choice of the AN positions, and a little
redundancy is needed w.r.t. the area coverage: A good tradeoff
is given by imposing that the MN senses at least four ANs
(almost) everywhere.1

Finding an optimal deployment of the ANs is, in general,
a very difficult problem to solve [25]; in this context, a dif-
ferent suboptimal approach is preferred based on an accurate
modeling of the ambient and on ray-tracing techniques [15]. A
preliminary experimental connectivity analysis to support the
actual node deployment is necessary. On-field tests show that
the line-of-sight (LOS) link is 30 m long, whereas nonline-of-
sight links are, on average, 20 m long. By rule of thumb, every
beacon is assumed to cover a cell dimension of approximately
10–12 m, and 12 sensors are enough to guarantee robustness
and stability to the WSN.

1In some areas like closed rooms and narrow passages, only two ANs can
be sensed. The correctness of the estimation is guaranteed by the stochastic
modeling of the MN dynamics.

A software package (RPS Ver. 5.3) is used, which computes
the power of an electromagnetic signal in a certain area consid-
ering signal attenuation in free space, reflection, diffraction, and
scattering phenomena.2 Every AN is modeled as an isotropic
source with a carrying frequency of 2.4 GHz and a transmission
power of 0 dBm (1.0 mW). A trial-and-error iteration procedure
yields the final deployment to obtain a composite coverage
of the area that is qualitatively balanced and quantitatively
providing a signal intensity that is always higher than −65 dBm
(see Fig. 8). Note that five ANs are positioned in each large
subarea, and two ANs are placed along the corridor.

Remark: A further optimization can reduce to four the num-
ber of beacons in the two large subareas without preventing
the localization method from working properly. Nonetheless,
since the whole system is conceived to also run in emergency
contexts, with one or more ANs damaged, some redundancy is
kept w.r.t. the WSN coverage. Anyway, the small number of
ANs grants easy and cheap installation of the WSN.

Remark: The RPS simulation assumes that all ANs are
positioned at a 2-m height, and the receiver nodes are at a
1-m height. Even if these settings do not correspond to real
work conditions [26], it is reasonable to suppose that the
composite coverage of the area is actually close to the real one.
Also, the localization and tracking algorithm is not influenced
by a different height of ANs since all the computations refer to
a priori maps that are gathered after the AN deployment. This
fact allows the simplification to a 2-D problem.

B. A Priori Data Gathering

As explained in Section III, the algorithm requires a priori
maps for the expected received power signal ȳl(x), the random

2The communication protocol that is used by the sensor motes imposes
a carrying frequency belonging to [2400, 2483.5] MHz corresponding to a
wavelength between 12.08 and 12.5 cm. Since the objects in the environment
are larger than the wavelength, reflection, diffraction, and scattering take place.
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effect due to small objects and people moving σ2
l (x), and the

packet arrival probability λl(x). A coarse almost regular grid is
exploited, locating N = 115 gathering locations ({z(n)}N

n=1 �

X ); the MN is placed in each z(n) position, listening to broad-
casting ANs for NTS = 100 time slots. During every interval,
the MN stores the ID of the sensed ANs and the corresponding
RSS; the length of each time slot (1000 msb, which is equal to3

976.56 ms) has been computed so that no data loss can occur,
i.e., the MN is able to record up to 12 AN IDs and RSSs. The
gathering campaign, nevertheless, reveals that no more than ten
ANs can be sensed in some positions.

The radio chip provides an RSS indicator (RSSI), which is
described by

RSSI = RSS + RSSoff (20)

where RSSoff is an offset term varying from mote to mote.
In general, the presence of this addendum makes a calibration
necessary; in the specific case, no calibration is required if
the same MN is used for offline data gathering and tracking.
Therefore, in the following, we exploit the same notation by
confusing RSSI with RSS.

Let Rl(z(n)) be the subset of time slots when the lth AN
is sensed by the MN placed in z(n) once the maximum and
minimum RSS values have been removed4; this solution will
prove beneficial in the interpolation phase (see Section V-C).
The expected value ȳl(z(n)) is given by

ȳl

(
z(n)

)
=

1∣∣Rl

(
z(n)

)∣∣
⎛⎜⎝ ∑

i∈Rl(z(n))
y
(i)
l

(
z(n)

)⎞⎟⎠ . (21)

The expected received power signal for each gathering location
yl(z(n)) is computed using a truncated propagation model,
which means that when a node signal is not received at all,
ȳl(z(n)) = −70 dBm, with the sensitivity of the node chip
being −60 dBm. Similarly, the variance σ2

l (z(n)) is com-
puted as

σ2
l

(
z(n)

)
=

1∣∣Rl

(
z(n)

)∣∣
⎡⎢⎣ ∑

i∈Rl(z(n))

(
y
(i)
l

(
z(n)
)
−ȳl

(
z(n)
))2

⎤⎥⎦
(22)

and, if |Rl(z(n))| ≤ 1, σ2
l (z(n)) = 25 dBm2 is chosen such

that, if the received signal power is modeled as N (ȳl, σ
2
l ),

the probability of receiving a signal packet from the lth AN
(yl ≥ −60 dBm) is around 4%.

The transmission success probability λl(z(n)) results from

λl

(
z(n)

)
= max

[
λmin,min

(∣∣Rl

(
z(n)

)∣∣
NTS

, λMAX

)]
(23)

3The used hardware timer is in binary milliseconds (msb), that is, 1024 ticks
every second.

4The cardinality of this set is denoted by |Rl(z
(n))|.

which limits the range value λl(z(n)) ∈ [λmin, λMAX ] =
[0.03, 0.97]; this practical constraint is motivated by the limited
time that is employed for the offline gathering together with the
high average LOS link w.r.t. the dimension of the environment.

C. Map Interpolation

In the actual setup, the fine position estimate grid
{x(m)}M

m=1 ⊆ X is a regular 2-D grid with Δ = 0.5 m. An
isotropic correlation function is assumed for the interpolation
procedure, as proposed in [24] for the estimation of 2-D contin-
uous fields, i.e.,

r(d) = e−
d

d0 (24)

where d0 refers to the weight attributed to distant data: Higher
values for d0 yield to smoother map surfaces, while lower
values provide beveled ones. Empirical considerations suggest
d0 = 20 for both the expected power ȳl and the variance σ2

l ,
and d0 = 10 for the probability λl. To avoid boundary effects,
some fictitious gathering positions along the contour are
added, whose values yl, σ2

l , and λl are equal to those of the
nearest surveying locations. Additional attention must be paid
to variance and probability interpolation: By structure, these
parameters are bounded to σ2

l (x) ≥ σ2
min and λmin ≤ λl(x) ≤

λMAX,∀x, where σ2
min = 0.01 dBm2 is the minimum observed

variance value.

D. Hardware and Software Details

The ANs and the MN employed in this paper are Tmote
Sky [27], low-consumption motes provided with a Texas Instru-
ments MSP430 microcontroller (8 MHz, 10-kB random access
memory, 48-kB Flash memory), and a radio chip Chipcon
CC420 [28], which implements the communication protocol
IEEE 802.15.4 [29]. The MSP430 can turn the radio chip on
and off and can modulate the transmission power, which, in
this implementation, is kept constant at the maximum level.
The motes are powered either by two AA batteries or via
Universal Serial Bus (USB) connection. The former solution
is chosen for the ANs (regularly checking batteries), and the
latter is adopted for the MN, committing to a laptop PC
the burden of algorithmic computation. To complete the de-
scription, motes employ an operating system for embedded
device, i.e., TinyOS v. 1.1.15, which is programmed in nesC
language [30].

In addition to the localization of the MN, the communi-
cation of its position outside the network is also considered,
mimicking the presence of a remote coordination center. To
this aim, a multihop transmission protocol is applied, routing
the position estimate to a chosen AN that takes charge of
the external connection. A policy is enforced that checks the
novelty of a message before forwarding it to avoid data loop.
Since the multihop protocol requires that every AN can sense
and be sensed by at least another AN, to ensure robustness
of the communication procedure, in the design phase, fur-
ther constraint on the graph G is posed to be connected and
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Fig. 9. Examples of position estimates of the operator track. (Solid line) Reference path. (Dots) Discrete position estimates. The stop of the operator (lower right
side in path 2) is highlighted with a circle. (a) Path 1. NPL algorithm. (b) Path 1. WPL algorithm. (c) Path 2. NPL algorithm. (d) Path 2. WPL algorithm.

redundant.5 The data packets from each AN are organized as
follows:

• beacon ID (1 B);
• beacon position in the reference frame (2 B);
• transmission power (1 B).6

Indeed, a crucial point to grant good overall performance to
the algorithm is represented by a correct choice of timings. The
AN broadcast interval is set to 500 msb (488.28 ms), which
is a good tradeoff to achieve low energy consumption while
saving time. On the other hand, the MN sample time should
be short enough to justify the approximation of the tracked
position with a point, and concurrently, all operations of data
receipt and position estimation through the particle filter must
be accomplished. A good choice for the sample time length
is T = 2000 msb (1953.12 ms): Within T , a listening time of
1000 msb assures that all packets are correctly received [29],
and a further interval of 1000 msb is devoted to the algorithmic

5These policies are often kept into account within the transmission protocols;
however, it is also of interest to grant communication robustness from the
network topology design.

6In this a priori map approach, the AN position, as well as the transmission
power, is not used; nevertheless, three additional bytes affect the total com-
munication time by 192 μs (the CC420 transmits data at 250 kb/s), which is
negligible w.r.t. the length of the whole process (see Section V-D).

procedure; this involves the estimation of the MN position with
the particle filter, which requires at most 300 msb, even with a
large number of particles (S = 500), and leaves enough space
(700 msb) for other ancillary tasks [31]. In the case that the
estimated position is retransmitted to an external coordination
center, doubling T is required in the specific implementa-
tion due to data transmission through USB requiring about
2000 msb.

E. Experimental Results

For the experiments, a human operator moving across the
entire area is considered, following the routes shown in Fig. 9.
In these experiments, the realistic measurement model (4) is
employed, which includes packet loss phenomena. The initial
position information p(x1) [see (13)] is set to nonnull values
only in correspondence to the actual entrances to the area, and
the walk model is heuristically chosen as characterized by a
Gaussian ring-driving process with ρ̄ = 1.5 m and σv = 3 m,
if T = 2000 msb. These parameters are modified in the case
of adopting different values of sampling time T , which is set
according to the real-time requirements. The error estimate
in the track reconstruction has a mean value in the range of
2.5–4.0 m, depending on the adopted sampling time, which
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TABLE I
SIMULATION AND EXPERIMENT RESULTS. PERFORMANCES IN THE TWO

CASES ARE COMPARED IN TERMS OF NODE DENSITY (AREA/NUMBER OF

NODES), CELL AVERAGE RADIUS, AND MEAN LOCALIZATION ERROR

varies between T = 2000 msb and T = 4000 msb; in the latter
case, since the distance in time between consecutive position
increases (as well as its estimation uncertainty), higher error
values are those expected and verified in the experiments. The
comparison between the performance of the NPL and the WPL
algorithms is also shown, in the case of real experiments, to
account for the packet-loss phenomena that allows the amelio-
ration of the position estimate quantitatively (in terms of the
mean error), as already shown in Section IV. As the MN stops,
estimations tend to accumulate around the correct location
value, and the error diminishes [see Fig. 9(d)]. In any case,
all error values remain quite small w.r.t. the dimensions of the
cells and those characteristics of the environment, and better
performance could also be reached with a dedicated C-language
implementation.

VI. DISCUSSION

The results obtained both in simulation and real experi-
ments are summarized in Table I, where the mean error value
(averaged over several instances) is compared with the mean
cell dimension. Only the WPL results are presented since the
WPL algorithm consistently shows better performance w.r.t. the
NPL algorithm in simulation and real experiments, lowering
the mean error of about 7%–15% in both cases. Both the
simulations and the experiments refer to the realistic lossy
channel model, and the simulations are also conducted in the
presence of complete failure of beacons. In the simulation case,
the trajectory is that proposed in Section IV with the MN model
that is characterized by a Gaussian ring-driving process. The
experiments refer to a free trajectory of a human operator in
the studied environment, again resorting to a Gaussian ring-
driving process. A comment is now in order on the difference
between the results obtained in the simulation and those ob-
tained with real experiments. The AN map definition and data
are the same for both series of experiments; also, the adopted
model is similar, with the only difference given by the MN
driving processes, which, in the case of the real experiments,
is assumed to be characterized by more uncertainty (higher
variance values) than that in the model used in the simulation.
The source of the difference between the two performances is to
be sought mainly in the actual MN behavior: In the simulation,
measurements are provided by a realization of the ideal output
equation (1), whereas in the real experiments, they are obtained
from real measurements, which are, of course, not forced to
follow a specific model.

VII. CONCLUSION

In this paper, the problem of localization and tracking in
WSNs has been approached. In particular, this paper has fo-
cused on the design of a cheap and easy-to-deploy architec-
ture for critical infrastructures, which, nevertheless, requires
some effort for a preliminary setup campaign. The proposed
tracking system architecture considers a static beacon network
and an MN moving in it. In this spirit, an RSS map model
of the monitored environment is built from experimental mea-
surements, a stochastic model of the MN to be localized is
employed, and the presence of lossy communication channel
is taken into account. The formalization of the problem and the
mathematical modeling have been developed and discussed in
detail within the estimation theory framework. This approach
is first validated in simulations, which also aims at providing a
deeper insight into the dynamics of the MN and the placement
of the ANs. One major contribution of this paper consists of the
actual implementation of the system in an operative scenario,
namely, the basement floor of an industrial building, where the
localization experiments have been run. Within the condition
variability of simulations and real experiments, the overall
good performance of the system has been assessed in terms of
reconstruction accuracy and robustness to node failure.

As a final note, both issues of network scalability and multi-
object tracking can be dealt within this framework, while a
more delicate aspect is that concerning the presence of a
dynamic environment due to the exploitation of a priori maps.
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